AQE-Net: A Deep Learning Model for Estimating Air Quality of Karachi City from Mobile Images

نویسندگان

چکیده

Air quality has a significant influence on the environment and health. Instruments that efficiently inexpensively detect air could be extremely valuable in detecting indices. This study presents robust deep learning model named AQE-Net, for estimating from mobile images. The algorithm extracts features patterns scene photographs collected by camera device then classifies images according to index (AQI) levels. Additionally, an dataset (KARACHI-AQI) of high-quality outdoor was constructed enable model’s training assessment performance. sample data were monitoring station Karachi City, Pakistan, comprising 1001 hourly datasets, including photographs, PM2.5 levels, AQI. compares examines traditional machine algorithms, e.g., support vector (SVM), models, such as VGG16, InceptionV3, AQE-Net KHI-AQI dataset. experimental findings demonstrate that, compared other achieved more accurate categorization quality. 70.1% accuracy, while SVM, InceptionV3 56.2% 59.2% respectively. In addition, MSE, MAE, MAPE values calculated our (1.278, 0.542, 0.310), which indicates remarkable efficacy approach. suggested method shows promise fast way estimate classify pollutants only captured photographs. flexible scalable potential fill gaps gathered costly devices around world.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

Melanoma detection with a deep learning model

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic s...

متن کامل

A deep learning model for estimating story points

Although there has been substantial research in software analytics for effort estimation in traditional software projects, little work has been done for estimation in agile projects, especially estimating user stories or issues. Story points are the most common unit of measure used for estimating the effort involved in implementing a user story or resolving an issue. In this paper, we offer for...

متن کامل

Assessment of the Air Quality of Isfahan City, Iran, Using Selected Air Quality Parameters

Background: Today, air pollution is one of the major problems in large cities including Isfahan. Methods: The objective of this study was to investigate the variations of ozone (O3), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NOx), sulphur dioxide (SO2), and particulate matter (PM10) concentrations in different months at three stations and also to explore ...

متن کامل

this study investigated the relationship between quality of work life and organization citizenship behavior from the viewpoint of teachers in high schools in tehran city.

چکیده هدف از پژوهش حاضر بررسی رابطه کیفیت زندگی کاری و رفتار شهروندی سازمانی در مدارس مقطع متوسطه پسرانه شهر تهران از دیدگاه دبیران بود. روش پژوهش حاضر توصیفی و از نوع همبستگی بود. از بین دبیران مدارس شهر تهران تعداد 380 نفر به روش نمونه گیری خوشه ای چند مرحله ای به عنوان نمونه پژوهش انتخاب شدند و با تکمیل پرسشنامه ی کیفیت زندگی کاری والتون(1975) و پرسشنامه ی رفتار شهروندی سازمانی پودساکو...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2022

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs14225732